CytoTronics

Electrical Imaging: Live Cell Characterization from Stem Cell Biology to Phenotypic Disease Models

Shalaka Chitale, Ph.D. – Director of Biology

July 2024

Agenda for today

- Technology
- Applications
 - Disease modeling
 - Epithelial cells
 - Spheroids
 - Profiling
 - Multiplexed measurements
- The Pixel system: built for scale
- Products

Our team

Shalaka Chitale, PhD Director of Biology Postdoc UMass Medical PhD Molecular Biology

Jeffrey Abbott, PhD Co-founder & CEO PhD & Postdoc, Harvard Chemistry & Chem. Bio.

Vince Wu, PhD Co-founder & CTO PhD & Postdoc, Harvard Electrical Engineering

Duane Sword Co-founder & CBO Executive with 25+ yrs in Life Science tools

Leveraging semiconductors for cell-biology innovation

CytoTronics

CYTO tronics

- ✓ **Consolidation** of functionalities
- ✓ >100× spatial resolution
- ✓ Scalability to unprecedented throughputs

microchip

Harnessing the power of semiconductors

Impedance: Morphology & live-cell dynamics

Electrophysiology: Neurons & cardiac

Electrochemistry: Redox/metabolic

Manipulation: Stimulation and wounding

- Single-cell resolution
- ✓ Scale without compromise
- ✓ Seamless integration

<u>Nature Communications</u> (2023), <u>Lab on a Chip</u> (2022), <u>IEEE Solid State Circuits</u> (2020), <u>Lab on a Chip</u> (2020), <u>Nature Biomedical Engineering</u> (2019), <u>Nature Nanotechnology</u> (2017)

Technology development

CytoTronics

2012-2021

5

Combined modalities enable diverse applications

Diverse cell-biology applications

Subset of CytoTronics application development roadmap

CytoTronics

6

Field-based impedance: "electrical imaging"

Cells grow over electrodes in the electronic microplate

Scanning with different fields & frequencies create multiple "images" at each time-point

Magnitude and spatial parameter extraction: <u>20+ parameters measured over time</u>

A semiconductor 96-microplate platform for electrical-imaging based high-throughput phenotypic screening, Nat. Commun. (2023)

Unparalleled sensitivity and accuracy

- High sensitivity and dynamic range
 - Single electrode vs well aggregate
 - Small number of cells vs large number of cells
- Accurate measurements at low confluence
 - Cell mask ensures empty electrodes do not dominate the signal

Selectively assess electrodes occupied by cells

CytoTronics

8

Electrical imaging : ability to measure any cell line

Live-cell monitoring of pluripotency and differentiation

- iPSCs grown in mTeSR+ to maintain pluripotency
- After cell attachment, media changed to mTeSR+, E6 (differentiation primed media) or DMEM/FBS (differentiation induction media)
- Electrical imaging performed every 15 min for duration of experiment to monitor change in phenotype

- High-dimensional phenotype features distinguish pluripotent iPSCs from differentiation primed and differentiated cells
- Cells exposed to serum show distinct phenotype as early as **5 hours** after media change (PCA-1)
- Cells in E6 medium change phenotype, at later time points, starting 72 hours after media change (PCA-2)

Live cell electrical imaging can identify dynamic change in phenotypes

Disease Modeling and Heterogenous Cell Populations

- Interactions of multiple cell types within a tissue often play a role in disease models
- Electrical imaging can distinguish cell populations based on their phenotype

Label free tracking of heterogenous cell populations

CytoTronics

Disease Modeling and Heterogenous Cell Populations

- Cell types cannot be distinguished using brightfield imaging
- Electrical imaging identifies distinct cell populations in co-cultures and their dynamic changes over time
- Predictions at 72 hr correlate well with end-point fluorescent imaging using cellspecific markers

Label free tracking of heterogenous cell populations

Cellular responses: Multiparametric readouts

BTK inhibitors: irreversible and reversible

Compound response in a cell death assay

Compound response in an electrical imaging assay

Beyond IC₅₀: Dose response in high-dimensional space

CytoTronics

A 900+ proof-of-concept screen reveals 20+ distinct responses

A single screening step = MOA + toxicity + off-target effect profiling

Monitoring 3D structure: HepG2 spheroids

- Differentiate between 2D and 3D growth
 - Monitor increase in confluence
 - > Cells in 2D grow across well, while spheroids show radial growth over time
- Functional properties of cells in 2D versus 3D
 - > Attachment of spheroids is much lower than monolayer of cells
 - Changes in various functional properties can be monitored over time to identify phenotypes

Spatial resolution differentiated two types of growth

CytoTronics

17

Growth and death in individual spheroids

Track growth per spheroid

- More sensitive than global measurements of confluence
- Highlights inter-spheroid variability

- Accurate measurements of spheroid death
 - Dose dependent effect of Doxorubicin on spheroid size can be measured
 - Monitor changes in functional properties of spheroids upon compound treatment

Multiplexed measurements in electrogenic cells

- Pixel combines electrical imaging with electrophysiological measurements in electrogenic cells and non-electrogenic cells
- Electrical imaging can identify structural characteristics of cardiomyocytes and cardiac fibroblasts in co-cultures

Electrical imaging monitors structural features of multiple cell types

Multiplexed measurements in electrogenic cells

- Cardiac fibroblasts modulate electrical function of cardiomyocytes
- Cells can be paced using any electrode to stimulate
- Increasing the number of cardiac fibroblasts decreases conduction velocity across the cell sheet

Multiplexed measurements relate structure and function

Neuro electrophysiology – translatable capabilities from research

Spontaneous recordings

Stimulated synapses

Extracellular recording of direct synaptic signals with a CMOS-nanoelectrode array, Lab on a Chip (2020)

Manipulation – translatable capabilities from research

- Patterning via electrode-based gas generation
 - Co-culture boundary generation
 - Wound healing & cell migration
 - Removal of cell heterogeneity
- Cardiac & neuron stimulation

Patterning applied outside of white box

Multi-parametric functional imaging of cell cultures and tissues with a CMOS microelectrode array, Lab on a Chip (2022)

The Pixel Octo: built for scale

✓ Multiplexed live-cell readouts

- ✓ Low variability
- ✓ Scale without compromise
- ✓ Automation compatible

Label-free technology reduces variability

- Positive and negative controls used to assess batch effects
- No strong batch effects are observed from plates run across different days
- Phenotypes of the negative and positive controls are highly reproducible across plates

Electrical imaging provides robust quantitative measurements of phenotype CytoTronics

Real-time readiness assessment

- Live cells are monitored before and after compound/modulator addition
- Outlier wells with aberrant phenotypes are easily identified
- Improves interpretability of treatment related phenotypes

The Pixel system

Software and data modules

- Electrical imaging/impedance, (Beta, Q1)
- Cardiac, (Beta, Q2)
- Neuronal, (Beta, Q3)
- Redox (metabolism), TBD
- Manipulation (patterning), TBD

CytoTronics

26

Cloud-centric software design

- ✓ Control & monitor experiments remotely using a computer or cellphone
- ✓ Securely access, visualize, and analyze your data
- ✓ Customize data analysis with Python

Thank you!

